If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x+7=19x^2
We move all terms to the left:
2x+7-(19x^2)=0
determiningTheFunctionDomain -19x^2+2x+7=0
a = -19; b = 2; c = +7;
Δ = b2-4ac
Δ = 22-4·(-19)·7
Δ = 536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{536}=\sqrt{4*134}=\sqrt{4}*\sqrt{134}=2\sqrt{134}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{134}}{2*-19}=\frac{-2-2\sqrt{134}}{-38} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{134}}{2*-19}=\frac{-2+2\sqrt{134}}{-38} $
| 7y+2=2-3 | | 2x+10+4x=180 | | x(11)-203=x(4)-14 | | 3x+20+x=76 | | 4(0)=4n | | 28/5=-7x | | 5x-28/5=-7 | | 5x=-7+(28/5) | | 11u=24+8u | | -(4n+3)=-3-4n | | 2/7=2x-1/x+9 | | 132=14x+6 | | (-5x-2)=-20 | | 5.7g+3=3.7g+13 | | 37=x20 | | 10x=3x+16 | | -7x+32=-2(x+4) | | 8(x+3)=2x+6 | | 5x-5=127 | | 7x=679 | | 5x-127=3x+23 | | B=5h-1 | | 3x+2x+(x+12)+(2x=4)=360 | | 7x+15=11x-19 | | 3=w-58/9 | | 6+9q=78 | | 67=16+3d | | 3w-10=5 | | 2u+13=u+27 | | 8t=11t-36 | | X^2+3x-663=0 | | -3(x+17)=12 |